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Analysis of the Effective-Index Method for the Vector
Modes of Rectangular-Core Dielectric Waveguides

Kin Seng Chiang, Member, IEEE

Abstract— The approximations involved in the effective-index
method for analyzing the vector modes of rectangular-core di-
electric waveguides are examined in detail. It is shown that
the effective-index method does not solve the full vector-wave
equation that governs the modes. Instead, it solves the reduced
vector-wave equation, which is accurate only for approximately
linearly polarized waves. Furthermore, in solving the reduced
vector-wave equation, the method of separation of variables is
used, which leads to additional errors as the waveguide being
analyzed is a mathematically nonseparable structure. To charac-
terize the performance of the effective-index method, asymptotic
expressions are derived for the errors in the caleulation of prop-
agation constants, Apart from separating the effects of different
approximations involved, these expressions show explicitly how
the accuracy of the method depends on the mode type, the
normalized frequency, the mode orders, the dimensions of the
waveguide, and the relative refractive-index differences between
the core and the surrounding media. With the help of these
expressions, it is demonstrated that more accurate results can
be obtained by combining various effective-index solutions.

I. INTRODUCTION

HE effective-index method was first proposed by Knox

and Toulios in 1970 [1] with a view to improving
Marcatili’s results [2] for the fundamental mode of a simple
rectangular-core waveguide. The basic idea of the method is
to replace the rectangular structure by an equivalent slab with
an effective refractive index obtained from another slab. The
generic feature of the concept has since been recognized and
the method has been generalized and applied to more com-
plicated structures, such as composite rectangular waveguides
[3]-[9], diffused channel waveguides [10], various types of
optical fibers and fiber devices [9], [11]-[15], and nonlinear
waveguides [16]. In spite of the fact that the method has
become a popular waveguide design tool for a long time
[17], the theoretical basis of the method has not been firmly
established for many applications.

The first theoretical study of the method was given by
Peng and Oliner [6], [18], who pointed out that, in the case
of analyzing composite rectangular waveguides, the effective-
index method was in fact the lowest-order version of the mode-
matching method, which they developed. The approximate na-
ture of the effective-index method can thus be understood with
reference to a rigorous numerical method. namely, the mode-
matching method. In the study of the polarization properties
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of optical fibers with the effective-index method, Chiang [12]
presented the reduced vector-wave equation (in contrast with
the full vector-wave equation) that the method actually solved,
and pointed out which terms in the equation were ignored in
the application of the method. This study reveals, in the most
fundamental way, the basic assumptions made in the method.
Considering only the scalar modes, Kumar et al. [19] derived
the rectangular structure that was exact for the effective-index
method. By treating this structure as a perturbation of the
original structure, Chiang developed an asymptotic theory for
the effective-index method for rectangular waveguides [20]
and waveguide arrays [9]. This theory fully characterizes the
performance of the method for the scalar modes in the far-
from-cutoff region,

In this paper, a detailed analysis of the effective-index
method for the vector modes of rectangular-core waveguides
is presented. It is shown that the solution obtained from the
effective-index method in general contains errors arising from
the use of the reduced vector-wave equation to approximate
the full vector-wave equation, and from the use of a different
structure to approximate the original structure. Analytical
asymptotic expressions for these errors are derived to describe
explicitly the performance of the method. Based on these
expressions, a procedure to obtain more accurate solutions
from combining various effective-index solutions is proposed.
The results presented in this paper should provide a much
clearer picture of the nature of the effective-index method for
the analysis of rectangular-core waveguides.

II. WAVE EQUATIONS AND VECTOR MODES

It is well known that the transverse electric field E; in
an isotropic waveguide with a refractive-index profile n(z, y)
satisfies the full vector-wave equation [17]

2
ViE, + (n*k* — BB + V, |:Et Vt(g q =0 (D
n
where
J . a .
Vt %X—i— a—y

with X and y the unit vectors in the z and y directions,
respectively, k = 2w/ is the free-space wavenumber with A
the free-space wavelength, and § is the propagation constant.
Equation (1) actually consists of two equations coupling the z
and y components of the electric field. The solution obtained
from (1) in general contains both components (except for some
special geometries, such as slab waveguides) and is referred to
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Fig. 1. Dielectric waveguide of rectangular cross section.

as a “hybrid” mode or a vector mode. If the coupling terms in
(1) are ignored, the following reduced vector-wave equations

are obtained [12]
9 (E, 0n?
—_— 2 _ —I— =
ﬂ)Em+ax( > (%) 0, @

9 0 (E,O0n°\ _
PE () =0 ©

where E, and E, represent the z and y components of the
electric field, respectively. The propagation constants calcu-
lated from (2) and (3), which are separate equations, are in
general different and represent two different modes, which are
sometimes referred to as the quasi-TE and quasi-TM modes
or the E* and EY modes. Obviously, these modes are linearly
polarized modes as each of these contains only one transverse
field component.

It has been shown [12] that the effective-index method
solves the reduced vector-wave equations, instead of the full
vector-wave equation. This means that, in the effective-index
method, the linearly polarized modes are used to approximate
the hybrid modes. It is known that the guided mode of a
rectangular-core waveguide, though hybrid in nature, does
contain a predominant transverse electric field component
[2], and, therefore, can be well approximated by the linearly
polarized mode, as long as the mode is not close to cutoff.
This explains why the effective-index method can usually give
good results for the vector modes of rectangular waveguides
(except for cases where cross-polarization coupling is involved
[6]). In the weak-guidance limit (i.e., when the relative index
difference between the core and a surrounding medium is
small), however, the modes are always linearly polarized,
regardless of the geometrical shape of the waveguide, and the
effective-index method can be accurate for a wide range of
geometrical shapes [9]-[15].

VZE, + (n?k?

ViE, + (n’k® —

III. THE EFFECTIVE-INDEX METHOD

The cross-section of a rectangular-core waveguide is shown
in Fig. 1, where a and b are the half-thickness and the half-
width of the core, respectively, and n1,n2,ns, and ny are the
refractive indices of the core and the surrounding claddings
with n1 > ng > ng,ns. The refractive-index profile of this
waveguide can be characterized by three relative index steps:

n?
2 2
2b n? ny Dy Iy
2a
n;}
(2)
2 2 2 2
ns —(nxz—n4 ) n; nj —(nxz—nf)
2 2 2 2,02 o2
n2+mf-nl) 2b n; ng+n;-ny)
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ny-(ny'-ng’) ny—(n,-ng)
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Fig. 2. (a) Effective-index method that results in an z-dependent profile (the
z-method). (b) Mathematically separable profile that the z-method actually
analyzes.

= (n? — n?)/2n? for i = 2,3, 4. This structure is general
enough to represent several important classes of waveguides
including fully embedded waveguides (Ag = Az = Ay),
channel waveguides (A3 > Ag = Ay), and strip waveguides
(As = Ay > Ay). The guided mode of the waveguide is
denoted by the E} . mode, where ¢ = z or y indicates the
direction of the predominant transverse electric field, and m
and n are the numbers of the peaks in the field in the  and
y directions, respectively. Two different ways of applying the
effective-index method to the waveguide are possible, giving
different solutions for the same mode [7].

A. The x-Method

The effective-index method that results in an z-dependent
refractive-index profile (the z-method) is shown in Fig. 2(a).
The mode index (the propagation constant divided by the free-
space wavenumber) for the TE,, _.1(TM,,_1) mode of the slab
waveguide of thickness 2b is used as the effective refractive
index n, of a second slab of thickness 2a. The propagation
constant for the TM,,,_1(TE,,_1) mode of the second slab
waveguide is then regarded as the approximate propagation
constant for the E%, (EY ) mode of the rectangular wave-
guide [7]. The fact that the effective-index method solves two
slab waveguides in a sequence suggests that it is a method of
separation of variables. There must exist a separable refractive-
index profile that the method actually analyzes. The extent to
which this profile differs from the original profile is therefore
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a measure of the errors in the method. To find this profile, the
method of Kumar et al. [19] is used.

According to the separation of variables, the mode field and
the profile can be expressed by

¢(‘E7y) = '(/)a(r)'ébb(y)v (4)
n?(z,y) = nj(2) + n3(y). 5)

For the EZ, mode with E, = 4, the two steps of the
z-method just described can be represented mathematically by

d21l7b + [nZ( kZ 2k2 =0 (6)
dy2 b y) - naf: ]wb — Y

Lo [ o

d(n? + n)

dz? * dz | (n2 +n2) dx
2 .2 21.2 2 —
+ [na(@)k” + nZk” = B]%a =0 ™
with
ni(y)={ni, 0<y<2b, ®)
n%7 —o0o <y <0,
2
2 2 _ ) g, 0 S z S 2a’
Ty (.’E) + e = {n%7 otherwise (9)

where /3,1 denotes the propagation constant calculated from
(7). It is noted that (6) and (7) are the TE and TM wave
equations for the two slab waveguides shown in Fig. 2(a).
From (9), n2(z) can be solved

0 z < 2a
2 _ ’ = 3
nalz) = {n?1 ~n2, otherwise. (10)
The profile that the x-method analyzes for the £ =~ mode is

simply given by n2 + n2, i.e., the sum of (8) and (10). This
profile, which is shown in Fig. 2(b), differs from the original
profile in the left and right cladding regions.

For the EY,, mode with E, = 1. the effective-index
equations are

d%y d dn?
dydff t (%T;) [ng(W)k* — nZk* ]y = 0. (A1)
d*a
dz?
where n?(y) and n2(z) + n2 are given by (8) and (9). re-
spectively, and 3, is the corresponding propagation constant.
Obviously, nZ(z) is also given by (10). The values of n,
for the F;,,, and EY, modes are, of course, different, as
they are calculated from different equations, i.e., (6) and (11),
respectively. The form of the profile that the method analyzes,
shown in Fig. 2(b), is, however, independent of the mode type
and the mode orders. In fact, it is identical to that already
obtained for the scalar modes [19].

+ 2(@)k? +nik® = B2 Y. =0 (12)

B. The y-Method

The effective-index method can also result in a y-dependent
refractive-index profile (the y-method), as shown in Fig. 3(a).
In this case, the mode index for the TM,,,_1(TE,,_1) mode
of the slab waveguide of thickness 2a is used as the effective
refractive index n, of a second slab of thickness 2b. The

2a 2

(a)

2 2 2 2 2 2
n3 —(ny -y ) g +(n1 —ny )

2 2a
n22—(ny2—n4 )

3

2,2 2
ny—(ng-ng)

2 2 2
n2+(n1~ny)
(b)

Fig. 3. (a) Effective-index method that results in a y-dependent profile (the
y-method). (b) Mathematically separable profile that the y-method actually
analyzes.

propagation constant for the TE,_;(TM,,_;) mode of the
second slab waveguide is then used to approximate the prop-
agation constant for the EZ, . (EY,, ) mode of the rectangular
waveguide [7].

The E7, . mode is described by the following two separate
equations

424, i(ﬁdn;‘;)[ 5

n2(z)k* — n2k?|1a =0, (13)

dz? = dz\n2 dz
d* s
a? [ne () + n2k* — B2]s =0 (14)
with
)
2 ~ Jn7, 0<x < 2,
na(®) = {ni, otherwise, 1s)
n; 0 <y <2b,
ny(y) +n2=qni, 2b<y< +oo, (16)
ng, —co<y<O0

where (3,0 is the propagation constant calculated by the
method. From (16), nZ(y) can be solved

0, 0<y <2,
n2(y) = ¢ ni — né, 2b < y < +o0, 17)
ny —ng, —oo<y<0.

The profile for the y-method for the £, mode is given by the
sum of (15) and (17), as shown in Fig. 3(b), which differs from
the original profile in the upper and lower cladding regions.
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For the sake of completeness, the equations for the EY, .
mode are also given

d2,¢a 2 2 21.2
T3+ [Ma(@k —nyk*Je =0, (18)
Py d| g dng 407
dy? dy (n% + n;‘;) dy
+ [n§(y)k* + nk?* — Bla] 4y = 0 (19)

where n2(z), n3(y) + n2, and ny(y) are given by (15), (16),
and (17), respectively, and 3,5 is the corresponding propaga-
tion constant. The form of the profile for the EY,,, mode is

just the same as that for the E7,,, mode, and, in fact, the same
as that for the scalar mode [19].

IV. ERROR ANALYSIS

From the results obtained in the previous sections, the
errors in the effective-index method can be understood in the
following way. First, errors arise from the use of the solution
of the reduced vector-wave equation for a separable profile
to approximate the full vector-wave solution for the original
profile. Second, errors arise from solving the reduced vector-
wave equation for the separable profile. Unlike the scalar-wave
equation, the reduced vector-wave equation is nonseparable
even for a separable profile. For example, the pair (6) and
(7) for the z-method for the EY,  mode is not identical to
the reduced vector-wave equation (2) for the separable profile.
There exist errors in approximating (2) with (6) and (7). These
two types of errors can be separated by using perturbation
theory. This forms the basis of quantifying the accuracy of the
effective-index method.

A. Perturbation Formulas

The errors in the effective-index solution can be written as

% =B + e+ (20)
where [3; is the exact propagation constant, €;, represents the
error arising from the use of the separable linearly polarized
solution to approximate the exact vector solution, and 7;;
represents the error arising from the use of the effective-index
equations to approximate the reduced vector-wave equation
for the separable profile, with ¢ = z for the £, mode and
i = y for the EY,, mode, and j = 1 for the z-method and
j = 2 for the y-method.

The exact expression for €;; can be readily found from
perturbation theory [21]

e 1/2
Ei]' = 271,1]62(-[)[—0)
0
0 1 [(n2(2) + n}(y) — n*(2,y)]E - E. dudy

—00
S [TOE x HE + Ef x H) - 2dvdy

3y

where ey and g are the free-space permittivity and perme-
ability, respectively, n?(z,y) is the original profile shown in
Fig. 1, nZ(z) + nZ(y) is the separable profile, which depends

on the method used (i.e., the value of j), E and H are
the electric and magnetic fields for the separable profile,
respectively, E, and H, are the electric and magnetic fields for
the original profile, respectively, and Z is the unit vector along
the z direction. The lowest-order approximation of ¢;, can be
obtained by replacing the fields in (21) with those calculated
by the effective-index method

6,;]'2,

(222 2 maa) + ni(y) = n? (o, ) (BE + B2) dady

U J13 ER dady
(22)
with
1 (dE,\?
2 _ 1
B, = n%k2( di ) 23)

where E; = ¢,(x)yy(y) is the effective-index solution with
1 = z for the E¥, mode and ¢ = y for the EY  mode. The
relation H; = (ao/ug)l/znli x E,, where H; and E, are the
transverse magnetic and electric fields, respectively, has been
used in deriving (22).

To find an expression for #;,;, the reduced vector-wave
equation is multiplied by the effective-index solution ¥qy
and integrated over the entire two-dimensional space. The
appropriate effective-index equations, in integral forms, are
then used to simplify the result. In this way, the effective-
index equations are effectively treated as a perturbation of the
corresponding reduced vector-wave equation for the separable
profile. The lowest-order approximation of 7;; can then be
obtained by putting the field calculated by the effective-index
method into the final expression. This procedure leads to
the following results, as in (24)—(27), shown at the bottom
of the next page. With the help of these expressions, the
errors in the calculated propagation constants can be estimated
with the solutions obtained from the effective-index method.
This provides a way of assessing the accuracy of the method
without the need to refer to exact numerical data. In fact,
these formulas could be evaluated numerically to provide
perturbation corrections to the solutions calculated by the
effective-index method to produce more accurate results.

B. Asymptotic Results

In this section, an attempt is made to derive analytical
expressions from the perturbation formulas to characterize
explicitly the performance of the effective-index method. The
experience with the scalar modes [9], [20] shows that an
explicit error analysis appears to be possible only in the case
when the normalized frequency V' defined by

V = bkni(2A4)Y? (28)
tends to infinity. In such a case, the mode is far from cutoff and

the mode field is mainly confined in the core area. According
to an asymptotic theory [22], in the limit V — 400, the fields
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TABLE 1
ASYMPTOTIC ERRORS IN THE PROPAGATION CONSTANTS (SQUARED) CALCULATED BY THE TWO VERSIONS
OF THE EFFECTIVE-INDEX METHOD FOR THE VECTOR MODES OF RECTANGULAR-CORE WAVEGUIDES

Mode | Method | Asymptotic Error in 42
EZ, | o-Method | z2z (8)"" (1 _2A,)(1 +4A,)
yMethod | g1+ (22) 7]
EY,, | o-Method | jzet (22)?
y-Method | ZEEE[(1 — 2A,)(1 + 44,) + (%j)m (1 —2A5)(1 + 4A3)]

1, (z) and 1p(y) can be written as

sin BEE 0 <z < 2a,
1/2 , 1/2
mat(42) exp[;, () "2 —x<2<o,
Yo (z) L
et /2 , 1/2
: 1)2avm : (%ﬁ) €Xp [‘%(2_;) (z - 2“)}
\ 2a < ¢ < +o00,
(29)
'sinlnggyl, 0 <y < 20b,
) “)Z%exp[%y], —00 </ y <0, G0
b(y) =S 1/2 , 1/2
w(2) " o[- 4(22) "0 -]
2b <y < 4o0.

It should be noted that the fields are not continuous across the
boundaries. The fields at the boundaries given in (29) and (30)
are assumed to be on the cladding sides of the boundaries. The
fields on the core sides of the boundaries can be found from
the condition that n%(z, y)1¥(x,y) is continuous everywhere.

The substitution of (29) and (30) into the perturbation
formulas (22)—(27) leads to the following simple asymptotic
results (after a significant amount of analytical work has been
done)

2.9 4 3/2
%121nﬁﬂ<é{> (1—244),

1
16 R3p2V3 \ Ay S
m2n2w4A2 AQ 1/2
pl O ——e—— | — 1—2A4), 32
o1 ™ s (A4) ( 4) (32)
m2n2n? Ay 3/2
pp v T 1y (22 : 33
@2 oy | <A3> (33)

1
Nz2 ~ O(W)’ (34)
2.4 AL\ Y2
€ ™ _mPn’rt (A , (35)
16R362V3\ Ay
1
77y1 ~ O(W)a (36)

mZn2rt

2 = o R2p2Y

A 3/2
(1-2A,) + (A_§> (1-— 2A3)], (37)

m2n?rtA,

SRERVS 8

My2 =

(1-2A,) + (%"i) 1/2(1 — 2As)

3

where R = a/b is the aspect ratio of the core, and O(1/V4)
means “of the order of 1/ V47 In writing (31)—(38), only the
most significant terms are retained, which are of the order of
1/ V. T2 and 7,1, which are of the higher order, are therefore
neglected. The asymptotic errors in various effective-index
solutions are summarized in Table I. The expressions given
in Table I show explicitly how the accuracy of the method is
affected by the way of applying the method, the mode type, the
normalized frequency, the mode orders, the dimensions of the
structure, and the relative index differences. It is noted that the
errors in the z-method decrease with increasing R faster than
those in the y-method (1/R? versus 1/R?). The z-method is
particularly accurate for waveguides with Ay < A4 (such as
strip waveguides). In the weak-guidance case when Ao tends
to zero, the results reduce to those already obtained for the
scalar modes [20].

+eo d o d(ni4n3) d o d(nj+n})
Mot o w”d)“{d_f[(“ atny)  dr ] _w[mzw;:’) Za ]}dﬂ"dy (24)
e f+°° f+°° Y292 drdy
&) [es) . dn " d ni ni
P2 vt &[4 5e) - & e ]} dedy o)
2= f”ﬂ*“%ﬁmMy
+oo ptoo 2 d |y dn d Py d(n2+n?)
N ~ Ya¥ {@[E_b} B _|:(n 24n2)  dy ] ”dmdy (26)
e T I 42} dwdy
400 ptoo d(nj +n2) 3 d(n?+4n?
f f 1’/}21’/}17{0% [(nzqﬁfnz) bdy ] - iy [(nﬁlﬂ:ni) dy b):| } da:dy
Ny2 = 27

ST [ w22 dady
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C. Numerical Verification

The validity of the asymptotic expressions with Ay — 0 for
the scalar modes has been verified numerically [20]. Here the
effects of a finite relative index difference are examined.

For the sake of simplicity, a fully embedded waveguide with
Ag = Ag = A, is considered. From Table I, the asymptotic
errors for this structure are given by

~ f7 + 1‘?7:%257;‘5( 1—2A2)(1 +44A5), (39

Ly 2+ s, (40)
=y I%n%‘e?’ 1)
~ By + %@%(1 205)(1+44;).  (42)

These equations predict that the z-method and the y-method
can produce equal results only for a special value of R, which
is given by

R= (1 — 2A2)(1 + 4A2) “43)
for the E7,, mode, and by
1
R= (44

(]. — 2A2)(1 + 4A2)

for the E¥, mode. To check these predictions numerically,
the z-method and the y-method are applied to waveguides that
cover a range of aspect ratios and the particular aspect ratio
for which the results calculated from both methods are equal is
determined. This particular aspect ratio as a function of Ag is
shown in Fig. 4(a) for the EY; mode, and in Fig. 4(b) for the
EY, mode, for V = 10 and 20. The agreement between the
numerical results and the asymptotic values calculated from
(43) and (44) is good. As expected, the agreement is better for
a larger value of V. To check roughly the range of V values
over which the asymptotic theory is valid, the numerically
calculated aspect ratio is plotted in Fig. 5 as a function of V
for the case Ay = 0.25. The value of the aspect ratio predicted
by (43) and (44) is equal to unity for both the EF  and EY .
modes. The numerical results, as shown in Fig. 5, are indeed
close to unity except at small values of V. Significant deviation
from unity occurs when the value of V' is smaller than about 4
for both the Ef; and EY; modes. It appears that the asymptotic
results remain accurate even at moderate values of V.

To test the validity of the asymptotic expressions more thor-
oughly, the calculation of the birefringence in the waveguide
is considered. The birefringences calculated by the z-method
and the y-method, denoted by §3? and 6§42, respectively, are
given by

m2n27r

582 = 12 00° + S Aa(1 - 44;),  (45)
m2’n27r4

883 = i = B = 60° — Al = 48) (40

where §3% = 32 — B is the exact birefringence. Birefringence
does not exist in the scalar approximation (since 63? =
682 = 0 when A, = 0); its presence is a characteristic

2.5
Asymptotic Expression
Numerical, V=20
o el
20 F Numerical, V=10
I

1.04

0 5 2 i X ] o [ IR .
0.0 0.1 0.2 0.3 0.4 0.6
A
(a)
1.2

1.04

0.8

0.4

Asymptotic Expression

Numerical, V=20
—

0.2
Numerical, V=10
"
0.0 . ) 1 . 1 N 1 s
0.0 0.1 0.2 0.3 0.4 0.5
Ay
(b)

Fig. 4. Aspectratio R of the rectangular core for which the z-method and the
y-method give the same results as a function of the relative index difference
Ag calculated for (a) the EY, mode, and (b) the E 11 mode.

of the vector modes. Obviously, whether the effective-index
method overestimates or underestimates the exact birefrin-
gence depends on the value of A,. The difference between
the normalized birefringences calculated by the z-method and
the y-method for a fully embedded waveguide with an aspect
ratio of R = 2 is plotted as a function of V in Fig. 6(a)
for As = 0.1 and 0.2, and in Fig. 6(b) for Ay, = 0.3 and
0.4. The normalized birefringence is equal to the difference
between the normalized propagation constants for the E¥; and
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1.4

1.2 =
z
1

1o} o~ o
0.8 |
0.6 . . A :
o 10 20 30 40
Fig. 5. Aspect ratio R of the rectangular core for which the z-method and

the y-method give the same results as a function of V" for Ay = 0.25.

Ej, modes, ie. §P, = P,, — P,,. where the normalized
propagation constant P,,(¢ = z,y and j = 1, 2) is defined by
P = (ﬂz]/k)z - 'I‘L%
" n —ni
It is clear from (45) and (46) that, for As = 0.1 and
0.2,6P; > 6Py, whereas for As = 0.3 and 0.4,6 > 6P;.
As shown in Fig. 6, the asymptotic results agree well with
the exact numerical results and are therefore verified. The
agreement is less favorable for a large value of A, because
of the omission of the higher-order terms in the asymptotic
expressions, which could become significant when the value
of Ay is large.

(47)

V. THE DUAL EFFECTIVE-INDEX METHOD

The perturbation formulas (22)—(27) could be evaluated to
provide perturbation corrections to the effective-index solu-
tion. This could lead to improved results but the evaluation of
the integrals involved is tedious. A simpler method to obtain
more accurate results is based on cancellation of the errors
in various effective-index solutions. As an example, improved
results can be obtained for fully embedded waveguides by
eliminating the errors that appear in (39)-(42). It is noted
from (39)~(42) that the errors in §7, and 32, are R times
of those in 2, and 32,, respectively. These errors can be
eliminated by multiplying the appropriate equations by R or
R? and subtracting the resultant equations. These procedures
lead to

(R?*B3 — Bi2) + R(G5 — B5)

G2~ . ) (48)
9 (Rzﬂgl - 52) + R(B2, — 52,)
By =~ 1 . (49)

More accurate results are therefore expected by combining the
four effective-index solutions according to (48) and (49).
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Fig. 6. The difference between the normalized birefringences P, and 6 P
calculated by the r-method and the y-method as a function of 1~ for a fully
embedded rectangular waveguide: (a) Az = 0.1 and 0.2; (b) Ay = 0.3
and 0 4.

The normalized propagation constants calculated from (48)
and (49) for the E, and EY, modes, together with the results
obtained from the z-method and the y-method, are presented in
Table II for R = 2, and in Table 11l for R = 1, where the point-
matching results of Goell [23] (from graph reading) are shown
as references. In principle, (48) and (49) are not applicable for
R =1, but in practice, a waveguide with R slightly larger than
unity can be used to approximate the R = 1 waveguide. The
effective-index results shown in Table III are in fact calculated
for a waveguide with R = 1.00001 to ensure that the errors
due to the slight difference in R can be neglected, yet (48)
and (49) remains applicable. As shown in Tables II and III,
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TABLE II

NORMALIZED PROPAGATION CONSTANTS CALCULATED BY VARIOUS METHODS FOR THE EY, anp EY;
Mobes oF A FulLy EMBEDDED RECTANGULAR WAVEGUIDE WITH 1 = 1.5,n0 = 1.0, AND R = 2

z-Method y-Method Dual Method | Point Matching
\4 P P, P, Py P, P, P, P,
0.9425 || 0.1848 | 0.0756 | 0.1850 | 0.1272 | 0.1504 | 0.0583 | 0.122 | 0.049
1.2566 || 0.3471 | 0.2124 | 0.3539 | 0.2515 | 0.3187 | 0.1948 | 0.309 | 0.183
1.5708 || 0.4851 | 0.3635 | 0.4911 | 0.3852 | 0.4686 } 0.3522 | 0.469 | 0.344
1.8850 || 0.5896 | 0.4915 | 0.5937 | 0.5029 | 0.5807 | 0.4850 | 0.580 | 0.473
2.1991 || 0.6673 | 0.5906 | 0.6700 | 0.5967 | 0.6624 | 0.5868 | 0.662 | 0.583
2.5133 |f 0.7256 | 0.6658 | 0.7274 | 0.6693 | 0.7228 | 0.6635 | 0.721 | 0.659
3.1416 || 0.8048 | 0.7675 | 0.8056 | 0.7687 | 0.8037 | 0.7665 | 0.803 | 0.764
3.7699 || 0.8543 | 0.8298 | 0.8547 | 0.8304 | 0.8538 | 0.8293 | 0.854 | 0.829
TABLE IiI

NORMALIZED PROPAGATION CONSTANTS CALCULATED BY VARIOUS METHODS FOR THE E¥; AND EY;
MODES OF A FuLLY EMBEDDED RECTANGULAR WAVEGUIDE WITH n; = 1.5,n3 = 1.0, AND R = 1

z-Method y-Method Dual Method | Point Matching
|4 Py P, Py P, P, =P, P, =P,
1.2566 || 0.1493 | 0.1108 | 0.1108 | 0.1493 0.0882 0.062
1.5708 || 0.2596 | 0.2339 | 0.2339 | 0.2596 0.2012 0.184
1.8850 || 0.3726 | 0.3586 | 0.3586 | 0.3726 0.3315 0.323
2.1991 | 0.4731 | 0.4659 | 0.4659 | 0.4731 0.4472 0.440
2.5133 || 0.5568 | 0.5531 | 0.5531 | 0.5568 0.5406 0.533
3.1416 || 0.6792 | 0.6781 | 0.6781 | 0.6792 0.6724 0.669
3.7699 (| 0.7593 | 0.7589 | 0.7589 | 0.7593 0.7561 0.755
4.7124 || 0.8341 | 0.8340 | 0.8340 | 0.8341 0.8328 0.833

the results obtained from (48) and (49) are significantly more
accurate than the original effective-index solutions. It can be
observed from the results in Tables II and IIT that, in the case
of R = 2, the z-method is more accurate than the y-method,
whereas in the case of R = 1,P,; = P,y is more accurate
than Pp; = Py, as predicted by the asymptotic equations
(39)—(42).

There are other ways of eliminating the errors in the
effective-index solutions and such error-elimination proce-
dures have been named the dual effective-index method [7],
[11], and [12], as results from both the z-method and the y-
method are required. Equations (48) and (49) can therefore be
regarded as a version of the dual effective-index method. To
eliminate the errors, it is only necessary to know the relations
of the errors in different solutions. In the early work [7],
such relations were found heuristically without knowing the
detailed expressions for the errors. The expressions derived in
the present paper (Table I) actually provide a more rigorous
proof of those relations that were used preivously [7]. All the
numerical examples given so far [7], [11], [12], [20], including

those presented in this paper, indicate that, although the error-
elimination procedure (the dual effective-index method) is
exact only at V — +oo0, it is effective even down to the
close-to-cutoff region.

VI. CONCLUSION

A detailed and, in many ways, quantitative analysis of
the effective-index method applied to the vector modes of
rectangular-core waveguides has been presented. The contri-
butions of this study can be summarized as follows:

1) The one-dimensional wave equations that describe the
effective-index method for analyzing the vector modes
of rectangular-core waveguides are presented (Section
IID. It is found that solving these equations is equivalent
to solving the reduced vector-wave equation approxi-
mately for a mathematically separable structure, which
is different from the original structure in certain cladding
regions. The approximations involved in the method are
clarified at the most fundamental level—the equation
level.
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2) With the findings outlined in 1), general perturbation
formulas (22)—(27) are presented to describe the errors
in the method.

3) The perturbation formulas are evaluated for the special
case V — 4o0. The resultant asymptotic expressions
for the errors, summarized in Table I, can describe
explicitly the performance of the effective-index method
in great detail. These expressions quantify the errors
in the method to a high accuracy at large values of
V. At moderate values of V, they still provide useful
qualitative information about the performance of the
method.

4) A simple procedure (the dual effective-index method) is
proposed to obtain accurate results by combining various
effective-index solutions. This procedure is found to be
effective even if the mode is not far from cutoff.

The approach presented in this paper should be readily
extended to more complicated rectangular structures, such
as directional couplers and arrays, in a way similar to that
reported in [9] for the scalar modes.

REFERENCES

[11 R. M. Knox and P. P. Toulios, “Integrated circuits for the millime-
ter through optical frequency range,” in Proceedings, Symposium on
Submillimeter Waves. Brooklyn: Polytechnic Press, 1970, pp. 497-516.

[2] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional
coupler for integrated optics,” Bell Syst. Tech. J., vol. 48, pp. 2071-2102,
1969.

[3] H. Furuta, H. Noda, and A. Ihaya, “Novel optical waveguide for
integrated optics,” Appl. Opt., vol. 13, pp. 322-326, 1974.

[4] W.V.McLevige, T. Itoh, and R. Mittra, “New waveguide structures for
millimeter-wave and optical integrated circuits,” IEEE Trans. Microwave
Theory Tech., vol. MTT-23, pp. 788-794, 1975.

[5] T. Itoh, “Inverted strip dielectric waveguide for millimeter-wave inte-
grated circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-24,
pp- 821-828, 1976.

[6] A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance
and leakage properties of a class of open dielectric waveguides: Part
II-New physical effects,” IEEE Trans. Microwave Theory Tech., vol.
MTT-29, pp. 855-870, 1981.

[71 K. S. Chiang, “Dual effective-index method for the analysis of rect-
angular dielectric waveguides,” Appl. Opt., vol. 25, pp. 2169-2174,
1986.

(8]

9]

, “Effects of cores in fused tapered single-mode fiber couplers,”
Opt. Lett., vol. 12, pp. 431-433, 1987.

, “Effective-index method for the analysis of optical waveguide
couplers and arrays: An asymptotic theory,” J. Lightwave Technol., vol.
9, pp. 62-72, 1991.

G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel
waveguides by the effective index method,” Appl. Opt., vol. 16, pp.
113-118, 1977.

[10]

[11] K. S. Chiang, “Analysis of optical fibers by the effective-index method,”
Appl. Opt., vol. 25, pp. 348-354, 1986.

[12] —, “Geometric birefringence in a class of step-index fiber,” J.

Lightwave Technol., vol. LT-5, pp. 737-744, 1987,

K. Van de Velde, H. Thienpont, and R. Van Geen, “Extending the

effective index method for arbitrarily shaped inhomogeneous optical

waveguides,” J. Lightwave Technol., vol. 6, pp. 1153-1159, 1988.

K. S. Chiang, “Analysis of fused couplers by the effective-index

method,” Electron. Lett., vol. 22, pp. 12211222, 1986.

, “Stress-induced birefringence fibers designed for single-

polarization single-mode operation,” J. Lightwave Technol., vol. 7,

pp. 436441, 1989.

K. S. Chiang and R. A. Sammut, “Effective-index method for spatial

solitons in planar waveguides with Kerr-type nonlinearity,” J. Opt. Soc.

Am. B, vol. 10, pp. 704-708, 1993.

K. S. Chiang, “Review of numerical and approximate methods for the

modal analysis of general optical dielectric waveguides,” Opt. Quantum

Electron., vol. 26, pp. S113-S134, 1994,

S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a class

of open dielectric waveguides: Part —Mathematical formulations,”

IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 845-855, 1981.

A. Kumur, D. F. Clark, and B. Culshaw, “Explanation of errors

inherent in the effective-index method for analyzing rectangular-core

waveguides,” Opt. Lett., vol. 13, pp. 1129-1131, 1988.

K. S. Chiang, “Performance of the effective-index method for the

analysis of dielectric waveguides,” Opt. Lett., vol. 16, pp. 714-716,

1991.

A. W. Snyder and J. D. Love, Optical Waveguide Theory. London:

Chapman & Hall, 1983, p. 610.

A. W. Snyder and X.-H. Zheng, “Optical fibers of arbitrary cross

sections,” J. Opr. Soc. Am. A, vol. 3, pp. 600-609, 1986.

I. E. Goell, “A circular-harmonic computer analysis of rectangular

dielectric waveguides,” Bell Syst. Tech. J., vol. 48, pp. 21332160, 1969.

f13}

[14]

[15]

[16]

(17]

[18]

(19

[20]

[21]

[22]

[23]

Kin Seng Chiang (M’94) was born in Guangdong,
China, in 1957. He received the B.E. (Hon. I) and
the Ph.D. degrees in electrical engineering from the
University of New South Wales, Sydney, Australia,
in 1982 and 1986, respectively.

In 1986, he was with the Department of Mathe-
matics of the Australian Defence Force Academy
in Canberra. From 1986 to 1993, he was with
the Division of Applied Physics of the Common-
wealth Scientific and Industrial Research Organi-
" e zation (CSIRO), Sydney. From 1987 to 1988, he
received a Japanese Government Research Award and was with the Elec-
trotechnical Laboratory in Tsukuba City, Japan. From 1992 to 1993, he
was on secondment to the Optical Fiber Technology Centre (OFTC) of
the University of Sydney. In August 1993, he joined the Department of
Electronic Engineering of the City University of Hong Kong (previously the
City Polytechnic of Hong Kong), where he is currently Associate Professor.
He has published over 80 technical papers on optical waveguide theory and
characterization, numerical methods, fiber devices and sensors, and nonlinear
guided-wave optics.

Dr. Chiang is a member of the Optical Society of America, the International
Society for Optical Engineering (SPIE), and the Australian Optical Society.



