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Analysis of the Effective-Index Method for the Vector

Modes of Rectangular-Core Dielectric Waveguides
Kin Seng Chiang, Member, IEEE

Abstract— The approximations involved in the effective-index
method for analyzing the vector modes of rectangular-core di-

electric waveguides are examined in detail. It is shown that
the effective-index method does not solve the full vector-wave

equation that governs the modes. Instead, it solves the reduced

vector-wave equation, which is accurate only for approximately
linearly polarized waves. Furthermore, in solving the reduced
vector-wave equation, the method of separation of variables is

used, which leads to additional errors as the waveguide being
analyzed is a mathematically nonseparable structure. To charac-

terize the performance of the effective-index method, asymptotic
expressions are derived for the errors in the calculation of prop-

agation constants, Apart from separating the effects of different
approximations involved, these expressions show explicitly how
the accuracy of the method depends on the mode type, the
normalized frequency, the mode orders, the dimensions of the

waveguide, and the relative refractive-index differences between
the core and the surrounding media. With the help of these
expressions, it is demonstrated that more accurate results can

be obtained by combining various effective-index solutions.

I. INTRODUCTION

T

HE effective-index method was first proposed by Knox

and Toulios in 1970 [1] with a view to improving

Marcatili’s results [2] for the fundamental mode of a simple

rectangular-core waveguide. The basic idea of the method is

to replace the rectangular structure by an equivalent slab with

an effective refractive index obtained from another slab. The

generic feature of the concept has since been recognized and

the method has been generalized and applied to more com-

plicated structures, such as composite rectangular waveguides

[3]-[9], diffused channel waveguides [10], various types of

optical fibers and fiber devices [9], [ 11]–[ 15], and nonlinear

wavegttides [16]. In spite of the fact that the method has

become a popular waveguide design tool for a long time

[17], the theoretical basis of the method has not been firmly

established for many applications.

The first theoretical study of the method was given by

Peng and Oliner [6], [18], who pointed out that, in the case

of analyzing composite rectangular waveguides, the effective-
index method was in fact the lowest-order version of the mode-

matching method, which they developed. The approximate na-

ture of the effective-index method can thus be understood with

reference to a rigorous numerical method, namely, the mode-

matching method. In the study of the polarization properties
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of optical fibers with the effective-index method, Chiang [12]

presented the reduced vector-wave equation (in contrast with

the full vector-wave equation) that the method actually solved,

and pointed out which terms in the equation were ignored in

the application of the method. This study reveals, in the most

fundamental way, the basic assumptions made in the method.

Considering only the scalar modes, Kumar et al. [19] derived

the rectangular structure that was exact for the effective-index

method. By treating this structure as a perturbation of the

original structure, Chiang developed an asymptotic theory for

the effective-index method for rectangular waveguides [20]

and waveguide arrays [9]. This theory fully characterizes the

performance of the method for the scalar modes in the fm-

from-cutoff region.

In this paper, a detailed analysis of the effective-index

method for the vector modes of rectangular-core waveguides

is presented. It is shown that the solution obtained from the

effective-index method in general contains errors arising from

the use of the reduced vector-wave equation to approximate

the full vector-wave equation, and from the use of a different

structure to approximate the original structure. Analytical

asymptotic expressions for these errors are derived to describe

explicitly the performance of the method. Based on these

expressions, a procedure to obtain more accurate solutions

from combining various effective-index solutions is proposed.

The results presented in this paper should provide a much

clearer picture of the nature of the effective-index method for

the analysis of rectangular-core waveguides.

II. WAVE EQUATIONS AND VECTOR MODES

It is well known that the transverse electric field Et in

an isotropic waveguide with a refractive-index profile n(z, y)

satisfies the full vector-wave equation [17]

vFw “0 ‘1)V:Et + (n2k2 – /32)Et + ‘

where

vt=:x+;y
with x and y the unit vectors in the z and y directions,

respectively, k = 27r/A is the free-space wavenumber with A

the free-space wavelength, and /3 is the propagation constant,

Equation (1) actually consists of two equations coupling the x

and y components of the electric field. The solution obtained

from (1) in general contains both components (except for some

special geometries, such as slab waveguides) and is referred to
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as a “hybrid” mode or a vector mode. If the coupling terms in

(1) are ignored, the following reduced vector-wave equations

are obtained [12]

()8 E t3n2
VfEz + (n2k2 – /32)Ez + — ~—

~x n2 8X
= o, (2)

()

8 E8n2 =0
V~Ey + (n21c2 – ~2)EY + — ~—

~y n2 i?y
(3)

where Ez and Ev represent the $ and y components of the

electric field, respectively. The propagation constants calcu-

lated from (2) and (3), which are separate equations, are in

general different and represent two different modes, which are

sometimes referred to as the quasi-TE and quasi-TM modes

or the E’ and EY modes. Obviously, these modes are linearly

polarized modes as each of these contains only one transverse

field component.

It has been shown [12] that the effective-index method

solves the reduced vector-wave equations, instead of the full

vector-wave equation. This means that, in the effective-index

method, the linearly polarized modes are used to approximate

the hybrid modes. It is known that the guided mode of a

rectangular-core waveguide, though hybrid in nature, does

contain a predominant transverse electric field component

[2], and, therefore, can be well approximated by the linearly

polarized mode, as long as the mode is not close to cutoff.

This explains why the effective-index method can usually give

good results for the vector modes of rectangular waveguides

(except for cases where cross-polarization coupling is involved

[6]), In the weak-guidance limit (i.e., when the relative index

difference between the core and a surrounding medium is

small), however, the modes are always linearly polarized,

regardless of the geometrical shape of the waveguide, and the

effective-index method can be accurate for a wide range of

geometrical shapes [9]-[15].

III. THE EFFECTIVE-INDEX METHOD

The cross-section of a rectangular-core waveguide is shown

in Fig. 1, where a and b are the half-thickness and the half-

width of the core, respectively, and nl, n2, n3, and n4 are the

refractive indices of the core and the surrounding claddings

with nl > n2 ~ n3, n4. The refractive-index profile of this

waveguide can be characterized by three relative index steps:

2
flx

2a
+

693

n~’

“-(n’-n’wyln’-(n=)
(b)

Fig. 2. (a) Effective-index method that results in an z-dependent profile (the
z-method). (b) Mathematically separable profile that the ~-method actually

anatyzes.

Ai = (n? – n~)/2n~ for z = 2,3,4. This structure is general

enough to represent several important classes of waveguides

including fully embedded waveguides (A2 = A3 = A4),

channel waveguides (A3 > A2 = A4), and strip waveguides

(A3 = A4 > AZ). The guided mode of the waveguide is

denoted by the E&n mode, where z = x or y indicates the

direction of the predominant transverse electric field, and m

and n are the numbers of the peaks in the field in the z and

g directions, respectively. Two different ways of applying the

effective-index method to the waveguide are possible, giving

different solutions for the same mode [7].

A. The x-iklethod

The effective-index method that results in an x-dependent

refractive-index profile (the x-method) is shown in Fig. 2(a).

The mode index (the propagation constant divided by the free-

space wavenumber) for the TEm _ 1(TM~._ 1) mode of the slab

waveguide of thickness 2b is used as the effective refractive

index n. of a second slab of thickness 2a. The propagation

constant for the TMm_ 1(TEm _ 1) mode of the second slab

waveguide is then regarded as the approximate propagation

constant for the E~m (E&n) mode of the rectangular wave-

guide [7]. The fact that the effective-index method solves two

slab waveguides in a sequence suggests that it is a method of

separation of variables. There must exist a separable refractive-

index profile that the method actually analyzes. The extent to

which this profile differs from the original profile is therefore
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a measure of the errors in the method. To find this profile, the

method of Kumar et al. [19] is used.

According to the separation of variables, the mode field and

the profile can be expressed by

4(J, ?4)= ‘h(.~)i%(v), (4)

rz~(z, y) = n:(z) + n?(y). (5)

For the E&n mode with Er = @, the two steps of the

z-method just described can be represented mathematically by

(6)

t142

.

with

{

n:, 2b < y < +cm,

n;(y) = n?, O s y < 2b, (8)

n~, —cm<y <o,

{

n:, 0~x~2a,
n;, (x) + n: =

n$ ~ otherwise
(9)

where /3.1 denotes the propagation constant calculated from

(7). It is noted that (6) and (7) are the TE and TM wave

equations for the two slab waveguides shown in Fig. 2(a).

From (9), n:(z) can be solved

{

o, x ~ 2a,
n:(x) =

+72:, otherwise.
(lo)

The profile that the x-method analyzes for the 13~m, mode is

simply given by n% + n:, i.e., the sum of (8) and (10). This
profile, which is shown in Fig. 2(b), differs from the original

profile in the left and right cladding regions.

For the EL. mode with EY = ~. the effective-index

equations are

where n;(y) and n:(z) + n: are given by (8) and (9), re-

spectively, and Dvl is the corresponding propagation constant.
Obviously, n:(x) is also given by (10). The values of nx

for the E&n and E~n modes are, of course, different, as

they are calculated from different equations, i.e., (6) and (1 1),

respectively. The form of the profile that the method analyzes,

shown in Fig. 2(b), is, however, independent of the mode type

and the mode orders. In fact, it is identical to that already

obtained for the scalar modes [19].

B. The y-llethod

The effective-index method can also result in a y-dependent

refractive-index profile (the y-method), as shown in Fig. 3(a).

In this case, the mode index for the TMm _ 1(TE~_l ) mode

of the slab waveguide of thickness 2a is used as the effective

refractive index nv of a second slab of thickness 2b. The

n12

2a

n42 2
‘Y

2b

I

(a)

n~–(ny2–n~) nJ+(n/–ny2) nf–(ny 2-n/’)

%2
n42

“-(n’-nh%dn:-(n
(b)

Fig. 3. (a) Effective-index method that results in a y-dependent profile (the

y-method), (b) Mathematically separable profile that the y-method actually

analyzes.

propagation constant for the TE~_ I (TMm_l ) mode of the

second slab waveguide is then used to approximate the prop-

agation constant for the E~n (E~n ) mode of the rectangular

waveguide [7].

The E~n mode is described by the following two separate

equations

with

{

n;, O < x < 2a,
nj$(x) = —

n;, otherwise,
(15)

{

n:,

n:(y) + n; = n!, ;b5<yys<2?co, (16)

n;, —cm<y<o

where /3Z2 is the propagation constant calculated by the

method. From (16), n?(y) can be solved

{

o, Osy52b,

n:(y) = n~–n2, 2b<y<+oa,
3

(17)

n; —nV, –co<y <o.

The profile for the y-method for the E&n mode is given by the

sum of ( 15) and (17), as shown in Fig. 3(b), which differs from

the original profile in the upper and lower cladding regions.
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For the sake of completeness, the equations for the E~n

mode are also given

d2~.
~ + [n:(z)k2 – n;k2]@a = Q (18)

[

d2#b d @b d(n~ + n;)

-@ + ~ (n; + r@ dy 1+[n;(y)k2+n;~2–/3;2]vb = O (19)

where n~(x), n;(y) + n;, and ~b(y) are given by (15), (16),

and (17), respectively, and PVZ is the corresponding propaga-

tion constant. The form of the profile for the E~n mode is

just the same as that for the E:n mode, and, in fact, the same

as that for the scalar mode [19].

IV. ERROR ANALYSIS

From the results obtained in the previous sections, the

errors in the effective-index method can be understood in the

following way. First, errors arise from the use of the solution

of the reduced vector-wave equation for a separable profile

to approximate the full vector-wave solution for the original

profile. Second, errors arise from solving the reduced vector-

wave equation for the separable profile. Unlike the scalar-wave

equation, the reduced vector-wave equation is nonseparable

even for a separable profile. For example, the pair (6) and

(7) for the $-method for the E& mode is not identical to

the reduced vector-wave equation (2) for the separable profile.

There exist errors in approximating (2) with (6) and (7). These

two types of errors can be separated by using perturbation

theory. This forms the basis of quantifying the accuracy of the

effective-index method.

A. Perturbation Formulas

The errors in the effective-index solution can be written as

p:j = @ + Eij +%3 (20)

where ~~ is the exact propagation constant, eij represents the

error arising from the use of the separable linearly polarized

solution to approximate the exact vector solution, and Vij

represents the error arising from the use of the effective-index

equations to approximate the reduced vector-wave equation

for the separable profile, with i = x for the E&n mode and

i = y for the E&n mode, and j = 1 for the x-method and
j = 2 for the y-method.

The exact expression for eij can be readily found from

perturbation theory [21]

()
1/2

qj = 2nllc2 ~

~ ~!~ ~Y~ [(n~(~) + nt(y) - n2($, Y)] E ~Ee dxdy

~~g ./~D(E ‘ H; + E; ‘H) ~2 dxd~
(21)

where co and PO are the free-space permittivity and perme-

ability, respectively, n2 (x, y) is the original profile shown in

Fig. 1, n~($) + n: (Y) k the separable profile, which depends

on the method used (i.e., the value of j), E and H are

the electric and magnetic fields for the separable profile,

respectively, E. and H. are the electric and magnetic fields for

the original profile, respectively, and !2 is the unit vector along

the z direction. The lowest-order approximation of Cij can be

obtained by replacing the fields in (21) with those calculated

by the effective-index method

(22)

with

(23)

where Ei = @a(X)~b (y) is the effective-index solution with

z = x for the E~n mode and z = y for the E%. mode. Tlhe

relation Ht = (Eo/po) 1/2n1z x Et, where Ht and Et are dhe

transverse magnetic and electric fields, respectively, has been

used in deriving (22).

To find an expression for nij, the reduced vector-wave

equation is multiplied by the effective-index solution ‘#aOb

and integrated over the entire two-dimensional space. The

appropriate effective-index equations, in integral forms, we

then used to simplify the result. In this way, the effective-

index equations are effectively treated as a perturbation of the

corresponding reduced vector-wave equation for the separable

profile. The lowest-order approximation of qij can then be

obtained by putting the field calculated by the effective-index

method into the final expression. This procedure leads to

the following results, as in (24)–(27), shown at the bottom

of the next page. With the help of these expressions, the

errors in the calculated propagation constants can be estimated

with the solutions obtained from the effective-index method.

This provides a way of assessing the accuracy of the method

without the need to refer to exact numerical data. In fact,

these formulas could be evaluated numerically to provide

perturbation corrections to the solutions calculated by the

effective-index method to produce more accurate results.

B. Asymptotic Results

In this section, an attempt is made to derive analytical

expressions from the perturbation formulas to characterize

explicitly the performance of the effective-index method. The

experience with the scalar modes [9], [20] shows that an

explicit error analysis appears to be possible only in the case

when the normalized frequency V defined by

V - bkml(2A2)l/2 (28)

tends to infinity. In such a case, the mode is far from cutoff and

the mode field is mainly confined in the core area. According

to an asymptotic theory [22], in the limit V ~ +cq the fields
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TABLE I
ASYMPTOTIC ERRORS IN THE PROPAGATIONCONSTANTS (SQUARED) CALCULATED BY THE Two VERSIONS

o~ THE E~FECTIVE.INDEX METHOD FOR THE VECTOR MODES OF RECTANGULAR-COREWAVEGUIDES

Mode

E31n

Method Asymptotic Error in /32

x-Method =? )3’2(1 - 2A,)(1 + 4A,)

I
y-Method -P+ *321

~2n2=4 3/’2

x-Method — L&
16R3bzVa A+

y-Method * [(1 - 2A,)(1 + 4A,) + (*) 3’2 (1 - 2A,)(1 + 4A3)]

~.(z) and @~(y) can be written as

{sin-. o<x <2a.

It should be noted that the fields are not continuous across the

boundaries. The fields at the boundaries given in (29) and (30)

are assumed to be on the cladding sides of the boundaries. The

fields on the core sides of the boundaries can be found from

the condition that n,’ ($, y)~(z, y) is continuous everywhere.

The substitution of (29) and (30) into the perturbation

formulas (22)–(27) leads to the following simple asymptotic

results (after a significant amount of analytical work has been

done)

~2n2n4

(-)

A’ 312
CZ1Y

16R3b2V3 Ab
(1 - 2A4), (31)

(33)

()%2-0 +,

m2n2T4

(-)

Az 3~2
Eyl =

16R3b2V3 Ab ‘

‘vyl
()

.0;,
(34)

(35)

(36)

where R = a/b is the aspect ratio of the core, and 0(1/V4)

means “of the order of l/V4.” In writing (3 1)–(38), only the

most significant terms are retained, which are of the order of

l/V3. qc2 and q~l, which are of the higher order, are therefore

neglected. The asymptotic errors in various effective-index

solutions are summarized in Table I. The expressions given

in Table I show explicitly how the accuracy of the method is

affected by the way of applying the method, the mode type, the

normalized frequency, the mode orders, the dimensions of the

structure, and the relative index differences. It is noted that the

errors in the z-method decrease with increasing R faster than

those in the y-method (1/R3 versus l/R2). The z-method is

particularly accurate for waveguides with A2 << A4 (such as

strip waveguides). In the weak-guidance case when A2 tends

to zero, the results reduce to those already obtained for the

scalar modes [20].
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C. Numerical Verification

The validity of the asymptotic expressions with A2 ~ O for

the scalar modes has been verified numerically [20]. Here the

effects of a finite relative index difference are examined.

For the sake of simplicity, a fully embedded waveguide with

A2 = A3 = A4 is considered. From Table I, the asymptotic

errors for this structure are given by

.
Asymptotic Expression

... ........

Numericel, V = 20

Numer’V = 10

4

2.0

“n’K’ (1 - 2A2)(1 + 4A’),%1 z I% + ~~R3&Vs (39)

(40)

(41) 1.0

t
These equations predict that the x-method and the y-method

can produce equal results only for a special value of R, which

is given by

R = (1 – 2Az)(l +4Az) (43)

for the E;n mode, and by

OS ~

0.0 0.1 0,2 0.3 0.4 0.5

Az

(a)

1.2

.................... .........

1.01

0.8 -

* 0.6 -

0.4

r

Asymptotic Expression
,,,,...,,,,,,

Numer~V = 20
0.2

Numer~V = 10

1

R = (1 - 2A’)(1 + 4A’)
(44)

for the E&n mode. To check these predictions numerically,

the z-method and the y-method are applied to waveguides that

cover a range of aspect ratios and the particular aspect ratio

for which the results calculated from both methods are equal is

determined. This particular aspect ratio as a function of AZ is

shown in Fig. 4(a) for the Efl mode, and in Fig. 4(b) for the

E~l mode, for V = 10 and 20. The agreement between the

numerical results and the asymptotic values calculated from

(43) and (44) is good. As expected, the agreement is better for

a larger value of V. To check roughly the range of V values

over which the asymptotic theory is valid, the numerically

calculated aspect ratio is plotted in Fig. 5 as a function of V

for the case AZ = 0.25. The value of the aspect ratio predicted

by (43) and (44) is equal to unity for both the E~n and E~n

modes. The numerical results, as shown in Fig. 5, are indeed

close to unity except at small values of V. Significant deviation

from unity occurs when the value of V is smaller than about 4

for both the E:l and E~l modes. It appears that the asymptotic

results remain accurate even at moderate values of V.

To test the validity of the asymptotic expressions more thor-

oughly, the calculation of the birefringence in the waveguide

is considered. The birefringences calculated by the x-method

and the y-method, denoted by 8~~ and d~~, respectively, are

given by

“.”

0.0 0.1 0.2 0.3 0.4 0.5

A2

(b)

Fig. 4, Aspect ratio R of the rectangular core for which the z-method and the

Y-mefiod give the same resultsasa function of the relative index difference
AZ calculated for (a) the ~~1 mode, and (b) the 13~1 mode.

of the vector modes. Obviously, whether the effective-index

method overestimates or underestimates the exact birefrirk-

gence depends on the value of A’. The difference between

the normalized birefringences calculated by the z-method and

the y-method for a fully embedded waveguide with an aspect

ratio of R = 2 is plotted as a function of V in Fig. 6(a)

for A2 = 0.1 and 0.2, and in Fig. 6(b) for A2 = 0.3 and

0.4. The normalized birefringence is equal to the difference

between the normalized propagation constants for the Efl and

where b~z - ,@ – /3~ is the exact birefringence. Birefringence

does not exist in the scalar approximation (since r$~~ =

6,B~ = O when A2 = O); its presence is a characteristic
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I 1 I

o 10 20 30 40

Fig. 5. Aspect ratio R of therectangular core for which the z-method and
the y-method give the same results as a function of 1“ for A2 = 0.25.

E~l modes, i.e., 6P1 E PZJ – Pgj, where the normalized

propagation constant P%](z = x, y and j = 1,2) is defined by

(47)

It is clear from (45) and (46) that, for AZ = 0.1 and

0.2, 6P1 > 6P2, whereas for A2 = 0.3 and 0.4, 6P2 > 6P1.

As shown in Fig. 6, the asymptotic results agree well with

the exact numerical results and are therefore verified. The

agreement is less favorable for a large value of A2 because

of the omission of the higher-order terms in the asymptotic

expressions, which could become significant when the value

of Az is large.

V. THE DUAL EFFECTIVE-INDEX METHOD

The perturbation formulas (22)–(27) could be evaluated to

provide perturbation corrections to the effective-index solu-

tion. This could lead to improved results but the evaluation of

the integrals involved is tedious. A simpler method to obtain

more accurate results is based on cancellation of the errors

in various effective-index solutions. As an example, improved

results can be obtained for fully embedded waveguides by

eliminating the errors that appear in (39)–(42). It is noted
from (39)–(42) that the errors in fl~2 and @2 are R times

of those in ,@~ and /3~1, respectively. These errors can be

eliminated by multiplying the appropriate equations by R or

R2 and subtracting the resultant equations. These procedures

lead to

More accurate results are therefore expected by combining the

four effective-index solutions according to (48) and (49).

5. OE-06

2. OE-06

1 .OE-06

5 ,OE-07
N
Q

i 2.OE-07

N
% 1.OE-07

5.OE-08

2.OE-08

1 .OE-08
10

Asymptotic Expression

15 20 25 30

v
(a)

5. OE-06 I \ ...\

2. OE-06 -“...,
...
...

5.OE-07 -

2.OE-07 -

1.OE-07

5.OE-08

2.OE-08

1.OE-08
10 15 20 25 30

v
(b)

Fig. 6. The difference between the normahzed birefringences tiPl and 6P2
calculated by the z-method and the y-method as a function of ~” for a fully
embedded rectangular wavegmde: (a) A2 = 0.1 and O.2; (b) AZ = O.3
and O 4.

The normalized propagation constants calculated from (48)

and (49) for the E~l and E~l modes, together with the results

obtained from the m-method and the y-method, are presented in

Table II for R = 2, and in Table III for R = 1, where the point-

matching results of Goell [23] (from graph reading) are shown

as references. In principle, (48) and (49) are not applicable for

R = 1,but in practice, a waveguide with R slightly larger than

unity can be used to approximate the R = 1 waveguide. The

effective-index results shown in Table III are in fact calculated

for a waveguide with R = 1.00001 to ensure that the errors

due to the slight difference in R can be neglected, yet (48)

and (49) remains applicable. As shown in Tables II and III,



CHIANGANALYSISOFTHEEFFECTIVE-INDEXMETHODFORTHEVECTORMODES

TABLE II
NORMALIZED PROPAGATIONCONSTANTSCALCULATED BY VARIOUS METHODS FOR THE E’~~ AND 13~1

MODES OF A FULLY EMBEDDED RECTANGULAR WAVEGUIDE WITU nl = 1.5, nz = 1.0, AND R = 2

v

0.9425

1.2566

1.5708

1.8850

2.1991

2.5133

3.1416

3,7699

x-Method

P.1

0.1848

0.3471

0.4851

0.5896

0.6673

0.7256

0.8048

0.8543

Pyl

0.0756

0.2124

0.3635

0.4915

0.5906

0.6658

0.7675

0.8298

y-Method

0.1850

0.3539

0.4911

0.5937

0.6700

0.7274

0.8056

0.8547

P@

0.1272

0.2515

0.3852

0.5029

0.5967

0.6693

0.7687

0,8304

Dual Method

P.

0.1504

0.3187

0.4686

0.5807

0.6624

0.7228

0.8037

0.8538

0.0583

0.1948

0.3522

0.4850

0.5868

0.6635

0.7665

0.8293

Point Matching

Pz

0.122

0.309

0.469

0.580

0.662

0.721

0.803

0.854

P.

0.049

0.183

0.344

0.473

0.583

0.659

0.764

0.829

TABLE 111
NORMALIZED PROPAGATIONCONSTANTSCALCULATED BY VARIOUS METHODS FOR THE E~, AND E~,
MODES OF A FULLY EMBEDDED RECTANGULAR WAVEGUIDE WITH nl = 1.5, nz = 1.0, ‘~ND R =-~

v

1.2566

1.5708

1.8850

2.1991

2.5133

3.1416

3.7699

4.7124

x-Method

Pz~

0.1493

0.2596

0.3726

0.4731

0.5568

0.6792

0.7593

0.8341

Pv~

0.1108

0.2339

0.3586

0.4659

0.5531

0.6781

0.7589

0.8340

y-Method

Pz~

0.1108

0.2339

0.3586

0.4659

0.5531

0.6781

0.7589

0.8340

Pv~

0.1493

0.2596

0.3726

0.4731

0.5568

0.6792

0.7593

0.83~1

Dual Method

P. = Py

0.0882

0.2012

0.3315

0.4472

0.5406

0.6724

0.7561

0.8328

Point Matching

P. = Py

0.062

0.184

0.323

0.440

0.533

0.669

0.755

0.833

the results obtained from (48) and (49) are significantly more those presented in this paper, indicate that, although the error-

accurate than the original effective-index solutions. It can be

observed from the results in Tables II and III that, in the case

of R = 2, the x-method is more accurate than the y-method,

whereas in the case of R = 1, Pgl = PZ2 is more accurate

than P.l = PY2, as predicted by the asymptotic equations

(39)-(42).

There are other ways of eliminating the errors in the

effective-index solutions and such error-elimination proce-

dures have been named the dual effective-index method [7],

[1 1], and [12], as results from both the %-method and the y-

method are required. Equations (48) and (49) can therefore be

regarded as a version of the dual effective-index method. To

eliminate the errors, it is only necessary to know the relations

of the errors in different solutions. In the early work [7],

such relations were found heuristically without knowing the

detailed expressions for the errors. The expressions derived in

the present paper (Table I) actually provide a more rigorous

proof of those relations that were used preivously [7]. All the

numerical examples given so far [7], [11], [12], [20], including

elimiriation procedure ‘(the dual effective-index-method) is

exact only at V -+ +CXJ, it is effective even down to the

close-to-cutoff region.

VI. CONCLUSION

A detailed and, in many ways, quantitative analysis of

the effective-index method applied to the vector modes of

rectangular-core waveguides has been presented. The contri-

butions of this study can be summarized as follows:

1) The one-dimensional wave equations that describe the

effective-index method for analyzing the vector modes

of rectangular-core waveguides are presented (Section

III). It is found that solving these equations is equivalent
to solving the reduced vector-wave equation approxi-

mately for a mathematically separable structure, which

is different from the original structure in certain cladding

regions. The approximations involved in the method are

clarified at the most fundamental level—the equation

level.
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2)

3)

4)

With the findings outlined in 1), general perturbation

formulas (22)–(27) are presented to describe the errors

in the method.

The perturbation formulas are evaluated for the special

case V - +CXJ. The resultant asymptotic expressions

for the errors, summarized in Table I, can describe

explicitly the performance of the effective-index method

in great detail. These expressions quantify the errors

in the method to a high accuracy at large values of

V. At moderate values of V, they still provide useful

qualitative information about the performance of the

method.

A simple procedure (the dual effective-index method) is

proposed to obtain accurate results by combining various

effective-index solutions. This procedure is found to be

effective even if the mode is not far from cutoff.

The approach presented in this paper should be readily

extended to more complicated rectangular structures, such

as directional couplers and arrays, in a way similar to that

reported in [9] for the scalar modes.
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